Problem Solving with PYTHON BCV358C
Course Code: BCV358C
Credits: 01
CIE Marks: 50
SEE Marks: 50
Total Marks: 100
Exam Hours: 01
Total Hours of Pedagogy: 15H
Teaching Hours/Weeks: [L:T:P:S] 0:2:0:0
Introduction to Python: Installing Python and Python packages, Managing virtual environments with venv module Introduction to NumPy arrays:Array creation, indexing, data types, broadcasting, copies and views, universal functions, I/O with NumPy.
Introduction to NumPy and SciPy: NumPy subpackages– linalg, fft, random, polynomials, SciPy subpackages– linalg, fftpack, integrate, interpolate, optimize Introduction to Matplotlib: Plotting 2D graphs with Matplotlib, annotations, legend, saving plots to file, bar and pie charts, line plots.
Linear algebra using NumPy and SciPy: Solving linear simultaneous equations using NumPy and SciPy using numpy.linalg and scipy.linalg – solve, inverse, determinant, least square solution, Linear algebra using NumPy and SciPy (continued): Decomposition using lu and cholesky. Solving eigenvalue problems using NumPy and SciPy:Using numpy.linalg and scipy.linalg – eig, eigvals.
Solving initial value problems for ODE systems using scipy integrate subpackage– solve_ivp, RK45, LSODA. Numerical integration of functions using SciPy:Using scipy.integratesubpackage– Definite integral using Gaussian quadrature – quad and quadrature Numerical integration of fixed samples using scipy.integratesubpackage– Trapezoidal rule trapezoid, Simpson’s 1/3 rule using Simpson, Romberg integration romb.
Determining roots of equations using SciPyusing scipy optimizesubpackage– Bisection method bisect, Brent’s method brentq, Newton-Raphson method newton. Symbolic computing using SymPy and solving civil engineering problems using SymPy: Introduction, defining symbols, derivatives, integrals, limits, expression evaluation, expression simplification, solving equations, solving differential equations.